Optimal control of a nonhomogeneous Dirichlet boundary fractional diffusion equation
نویسندگان
چکیده
منابع مشابه
Numerical Approximation of a Fractional-in-space Diffusion Equation (ii) – with Nonhomogeneous Boundary Conditions
In this paper, a space fractional diffusion equation (SFDE) with nonhomogeneous boundary conditions on a bounded domain is considered. A new matrix transfer technique (MTT) for solving the SFDE is proposed. The method is based on a matrix representation of the fractional-in-space operator and the novelty of this approach is that a standard discretisation of the operator leads to a system of lin...
متن کاملA Nonlocal p-Laplacian Evolution Equation with Nonhomogeneous Dirichlet Boundary Conditions
Abstract. In this paper we study the nonlocal p-Laplacian-type diffusion equation ut(t, x) = ∫ RN J(x−y)|u(t, y)−u(t, x)|p−2(u(t, y)−u(t, x)) dy, (t, x) ∈]0, T [×Ω, with u(t, x) = ψ(x) for (t, x) ∈ ]0, T [×(RN \Ω). If p > 1, this is the nonlocal analogous problem to the well-known local p-Laplacian evolution equation ut = div(|∇u|p−2∇u) with Dirichlet boundary condition u(t, x) = ψ(x) on (t, x)...
متن کاملLaplace Equation in the Half-space with a Nonhomogeneous Dirichlet Boundary Condition
We deal with the Laplace equation in the half space. The use of a special family of weigted Sobolev spaces as a framework is at the heart of our approach. A complete class of existence, uniqueness and regularity results is obtained for inhomogeneous Dirichlet problem.
متن کاملA Stochastic Optimal Control Problem for the Heat Equation on the Halfline with Dirichlet Boundary-noise and Boundary-control
We consider a controlled state equation of parabolic type on the halfline (0,+∞) with boundary conditions of Dirichlet type in which the unknown is equal to the sum of the control and of a white noise in time. We study finite horizon and infinite horizon optimal control problem related by menas of backward stochastic differential equations.
متن کاملFinite Element Approximations of the Nonhomogeneous Fractional Dirichlet Problem
We study finite element approximations of the nonhomogeneous Dirichlet problem for the fractional Laplacian. Our approach is based on weak imposition of the Dirichlet condition and incorporating a nonlocal analogous of the normal derivative as a Lagrange multiplier in the formulation of the problem. In order to obtain convergence orders for our scheme, regularity estimates are developed, both f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computers & Mathematics with Applications
سال: 2011
ISSN: 0898-1221
DOI: 10.1016/j.camwa.2011.03.025